
Masaryk University
Faculty of Informatics

Complementation of
Semi-Deterministic

Transition-Based Generalized
Büchi Automata

Bachelor’s Thesis

Adam Fiedler

Brno, Spring 2019

This is where a copy of the official signed thesis assignment and a copy of the
Statement of an Author is located in the printed version of the document.

Declaration

Hereby I declare that this paper is my original authorial work, which
I have worked out on my own. All sources, references, and literature
used or excerpted during elaboration of this work are properly cited
and listed in complete reference to the due source.

Adam Fiedler

Advisor: doc. RNDr. Jan Strejček, Ph.D.
Consultant: RNDr. František Blahoudek, Ph.D.

i

Acknowledgements

I would very much like to thank Jan Strejček and František Blahoudek
for introducing me into this topic and for their invaluable suggestions
that helped me get to the finish line. Their patience and eagerness to
discuss ideas day and night were always inspiring. I am also deeply
grateful to my family and Petra for their enduring support.

iii

Abstract

The thesis presents an extension of the NCSB algorithm to comple-
ment the semi-deterministic transition-based generalized Büchi automaton
(SDTGBA). To the best of our knowledge, this extension is the first
existing algorithm that can complement the SDTGBA without trans-
forming the input automaton. We prove the extension’s correctness,
analyze its complexity, and suggest several optimizations. An imple-
mentation of the extension written using the SPOT library is included
and experimentally compared with two standard complementation
algorithms used on the SDTGBA.

iv

Keywords

ω-language, SDTGBA, complementation, semi-determinism, SPOT

v

Contents

1 Introduction 1

2 Preliminaries 3
2.1 Semi-Deterministic TGBA (SDTGBA) 4
2.2 Intuition into the NCSB Algorithm 6

3 SDTGBA Complementation 9
3.1 Formal Construction . 10
3.2 Complexity . 12
3.3 Correctness . 14
3.4 Further Optimizations . 19

3.4.1 Skipping Empty Breakpoints When Possible . . 19
3.4.2 Reducing Non-Determinism for Runs Entering

QD . 20
3.4.3 Cutting Down Si 23
3.4.4 Optimizations Review 25

4 Evaluation 27
4.1 Implementation (TGNCSB) 27
4.2 Experimental Comparison 28

4.2.1 Running On randaut 30
4.2.2 Running On randltl 32
4.2.3 Observations . 34

5 Conclusion 35

Bibliography 37

A Attachments 39

vii

List of Tables

4.1 Tools used in the evaluation. 27
4.2 Input processing. 29
4.3 Cumulative results on randaut. 30
4.4 Cumulative results on randltl. 32

ix

List of Figures

2.1 A semi-deterministic TGBA. 5
2.2 NCSB guessing and checking. 7
3.1 A delayed jump to S0 with an intersecting run. 12
3.2 Standard complementation of a total DTGBA. 13
3.3 Intersecting runs in different safe sets block a naive

version of Optimization 3.4.2. 21
4.1 tgncsb-opt vs. ncsb on randaut. 31
4.2 tgncsb-opt vs. autfilt on randaut. 31
4.3 tgncsb-opt vs. ncsb on randltl. 33
4.4 tgncsb-opt vs. autfilt on randltl. 33

xi

1 Introduction

Complementation of Büchi automata has become a prominent prob-
lem, for example, in model checking. When program runs are repre-
sented by an ω-language (a set of infinite words over a finite alphabet),
a requirement on their properties can be modeled as a Büchi automaton
(BA). Instead of testing a set L of the program runs explicitly for in-
clusion L ⊆ M, where M is a set representing the required properties,
algorithmic methods test for L ∩ M = ∅, where M is the complement
language of M. This is done by performing a well-known emptiness
check on the intersection of a BA accepting L and a constructed com-
plement automaton of a BA accepting M [1, p. 261].

In stark contrast with finite automata, the construction of the com-
plement BA is challenging because Büchi automata are generally non-
deterministic while their deterministic equivalents do not have to exist
without a more complex acceptance condition [2, p. 16]. Interestingly
enough, Blahoudek et al. have observed that some model checking
tools produce a more approachable class called semi-deterministic au-
tomata. Informally, these automata are behaving deterministically
from a certain point onward, which has turned out to be very useful
for complementation as shown by the NCSB algorithm [3]. NCSB with
its recent optimization called NCSB-Lazy continues to be the most effi-
cient algorithm for complementing the semi-deterministic BA (SDBA)
up to date [4, p. 141].

However, practicality has brought new types of automata with
Büchi-like acceptance. One such type is called the transition-based gen-
eralized Büchi automaton (TGBA), whose transition-based acceptance
and a little more articulate acceptance condition format among other
benefits usually lead to smaller automata in terms of states [5, p. 357].
Since a semi-deterministic TGBA (SDTGBA) can be transformed into a
conventional SDBA using degeneralization [5], the straightforward idea
is to complement an SDTGBA just by applying NCSB after degener-
alization. Imaginably though, degeneralizing automata can produce
redundancies, some of which might remain even after applying state
space reduction algorithms. The thesis aims to present the first di-
rect way to complement the SDTGBA and save states by skipping
degeneralization.

1

1. Introduction

Building upon the foundations laid out by NCSB, it turns out a
theoretical extension working directly with the SDTGBA can be de-
fined without any transformations of the input automaton. To properly
evaluate this extension, we needed an implementation preferably writ-
ten with the help of a library containing other algorithms available
for performance comparison, primarily NCSB itself to be run on the
transformed SDTGBA to the SDBA. Hence we have chosen SPOT [6],
the ω-automata tool containing usable algorithms for various manip-
ulations besides complementation and degeneralization. To name one,
SPOT contains a number of state space reduction algorithms, which we
call SPOT’s optimizations. Performance evaluation was made both with
and without applying these optimizations. In both cases, the exten-
sion seems to outperform NCSB running on degeneralized automata.
Another advantage is that the extension generates a transition-based
Büchi automaton with only one acceptance set, which works the same
as the conventional (transition-based) BA.

The thesis starts with formalizing the concepts of the TGBA, com-
plementation, and semi-determinism (Chapter 2). A helpful collection
of formal tools used throughout the text is also introduced. This is
followed by a brief overview of the original NCSB for a better under-
standing of the decisions made for the extension design. In Chapter 3,
the extension itself is formally defined, followed by a complexity anal-
ysis and a proof of correctness. We conclude the chapter with several
suggested optimizations. The rest of the work (Chapter 4) deals with
implementing the extension in the SPOT library, describing the exper-
imental evaluation and presenting results thereof (namely Sections
4.1, 4.2).

There is still great room for improvement outside the scope of this
thesis. The evaluation has shown the extension performs worse when
compared with the SPOT’s default tool for complementation called
autfilt --complement. This requires further analysis, although at
least one new direction for additional optimizations exists as sug-
gested by NCSB-Lazy [4, p. 143]. Despite the results, we hope that the
presented ideas can eventually be used for cheaper complementation
of the SDTGBA in SPOT.

2

2 Preliminaries

By a transition-based generalized Büchi automaton (TGBA) we mean a
tuple 𝒜 = (Q, Σ, δ, qI ,ℱ) where

∙ Q is a finite set of states,

∙ Σ is a finite alphabet,

∙ δ ⊆ Q × Σ × Q is a transition relation,

∙ qI ∈ Q is an initial state,

∙ ℱ = {F0, . . . , Fk} ⊆ 𝒫(δ) is a non-empty set of acceptance sets
containing accepting transitions.

Any triple (qs, a, qd) ∈ δ is called a transition from qs under a to
qd, where qs is called the source and qs is called the destination of the
transition. A run of 𝒜 on an infinite word w = w0w1w2 . . . ∈ Σω is any
maximal sequence of adjoining transitions1

ρ = (q0, w0, q1)(q1, w1, q2) . . . (qi−1, wi−1, qi)(qi, wi, qi+1) . . . ∈ δ+ ∪ δω

such that q0 = qI , where qj is called the successor of qi for any j ≥ i.
If a run ρ is finite, then we say ρ halts. Any subsequence of ρ is

said to contain a state q ∈ Q if q is the source or the destination of a
transition in this subsequence. Using this definition, q is unreachable if
there does not exist w such that a run on w contains q. Furthermore, a
run ρ1 of 𝒜 on w is said to be intersecting another run ρ2 ̸= ρ1 of 𝒜 on
w when ρ1 and ρ2 share a common non-empty suffix.

We say ρ is accepting if and only if it contains infinitely many tran-
sitions from each Fi ∈ ℱ , non-accepting otherwise. Subsequently, w is
accepted by 𝒜 if there exists an accepting run of 𝒜 on w. The ω-language
of 𝒜 denoted L(𝒜) is the set of all the infinite words accepted by 𝒜.
If for each w ∈ L(𝒜) there exists only one accepting run, then 𝒜 is
called unambiguous.

1. Maximal means that if a run is finite, then the run’s last destination is not a
source of any transition under the next letter.

3

2. Preliminaries

By a complement automaton 𝒞 of 𝒜 it is meant such TGBA that
L(𝒞) = Σω ∖ L(𝒜), hence complementation of 𝒜 just stands for con-
structing such a 𝒞.

To stay concise, we always assume that⋃
ℱ =

⋃
Fi∈ℱ

Fi.

Let us also introduce some special notation for the TGBA. Firstly,
q1

a−→ q2 shall denote any triple (q1, a, q2). We do not restrict these
triples to δ because we make great use of this notation on transitions
of both the input automaton and its complement to be constructed,
even on subsets of transitions as apparent in the following definition.

Since δ is defined as a relation for technical reasons, we include a
(total) function ∆ : Q × Σ ×𝒫(δ) → 𝒫(Q) that returns destinations.
It is defined as

∆(q1, a, T)def
= {q2 | q1

a−→ q2 ∈ T},

and further extended to sets X ⊆ Q as

∆(X, a, T)def
=
⋃

q∈X
∆(q, a, T).

Here T can be understood as a template to build ∆ for a given
(sub)set of transitions. For example, ∆(X, a,

⋃ℱ) returns exactly desti-
nations of accepting transitions from q under a. A trivial consequence
is that there is an accepting transition under a in Fi ∈ ℱ from a state
in X if and only if ∆(X, a, Fi) ̸= ∅. For simplification, we just write
∆(q, a) and ∆(X, a) when referring to ∆(q, a, δ), ∆(X, a, δ) respectively.

2.1 Semi-Deterministic TGBA (SDTGBA)

Before looking into semi-determinism, let us first briefly review what
we mean by determinism. A state q ∈ Q is called deterministic if and
only if |∆(q, a)| ≤ 1 for all a ∈ Σ, non-deterministic otherwise. We
call 𝒜 deterministic (DTGBA) when each reachable state q′ ∈ Q is
deterministic.

4

2. Preliminaries

d

QN QD

a

a

0
1

0
a

1
b

Figure 2.1: A semi-deterministic TGBA 𝒜 with Σ = {a, b},ℱ =
{F0, F1}. Dashed states are unreachable, the state d in QN could be
moved to QD if chosen. Marked transitions in QD belong to their
corresponding acceptance sets: for example, the transition marked 0

belongs to F0, the transition marked 0 1 belongs to both F0 and F1 (the
colors have no special meaning).

The thesis presents an approach to complementation of a special
class of the TGBA called the semi-deterministic TGBA (SDTGBA). For-
mally, a TGBA 𝒜 is semi-deterministic when Q = QN ∪ QD such that
QN, QD are disjoint and for each a ∈ Σ these three conditions are met.

SD1) ∆(QD, a) ⊆ QD

(there is no transition from a state in QD to a state in QN),

SD2) ∀q ∈ QD : |∆(q, a)| ≤ 1

(states in QD are deterministic),

SD3) ∀Fi ∈ ℱ : Fi ⊆ (QD × Σ × QD)

(accepting transitions exist only between the states in QD).

We sometimes refer to QN as the non-deterministic part and to QD as
the deterministic part of an SDTGBA 𝒜. The transitions in (QN × Σ ×
QD) ∩ δ are called transit transitions.

An example of an SDTGBA is sketched in Figure 2.1, although
we have to note that the definition is flexible enough to allow many
deviations from an expectable setup, such as having the initial state
in QD (rendering the automaton deterministic) or each state in QD
unreachable (thus L(𝒜) = ∅). This needs to be accounted for in a
correct complementation algorithm for the SDTGBA. We build our
algorithm upon the principles of an earlier work called NCSB [3].

5

2. Preliminaries

2.2 Intuition into the NCSB Algorithm

NCSB is a guess-and-check complementation algorithm introduced by
Blahoudek et al. [3] for the conventional state-based semi-deterministic
Büchi automaton (SDBA). We leave out the definition of the SDBA
because its exact form is not essential for the upcoming informal
presentation. The reader can imagine an SDBA as an SDTGBA we
have defined in Section 2.1 with the exceptions that acceptance is
based on accepting states (ℱ ⊆ 𝒫(Q)) instead of accepting transitions
and that there is only one such set of accepting states (|ℱ | = 1).

One of the options how to decide whether an infinite word w
belongs to the complement ω-language of an SDBA is verifying that
every run of the SDBA on w contains finitely many accepting states [3,
p. 774]. That is why NCSB keeps track of all the runs: it analyzes
run trees, an occurrence common to several other complementation
algorithms [1].

The theory behind NCSB works with a dynamic property of runs
which is termed safety. A run is said to become safe once after reading
some finite prefix of w it contains no more accepting states (i.e., the
remaining suffix of the run does not contain any accepting states) [3,
p. 774]. A trivial consequence of the definition then is that a safe run
cannot become unsafe again.

We do not know in advance when a particular run becomes safe,
by when meaning what prefix of w it takes for the run to stop visiting
accepting states. Here guessing comes into play: NCSB at times non-
deterministically guesses if a run has already become safe or not [3,
p. 775]. A way to understand it is that a guess splits the considered
path in the run tree of NCSB on w into at least two branches: one
for the positive and one for the negative answer. The negative branch
naturally behaves as if nothing has changed. The positive one, however,
starts checking if the run guessed to be safe is really safe. Note that this
is possible thanks to the fact that accepting states are deterministic.

If a run of the input automaton is to visit an accepting state in
the positive branch after all, the branch is cut off (by not defining
a transition to such a configuration), rendering the complement run
made up of this path non-accepting as it halts (see Figure 2.2). However,
if the checking is infinitely successful for the remaining suffix of w, the
guess must have been correct. If there exists a path in the run tree of

6

2. Preliminaries

∅, {q1, q2}, S, {q1}

...

∅, {q′1, q′2}, S′, {q′1}

∅, {q1, q′′2}, S′′, {q1}

...

∅, {q′2}, {q′1} ∪ S′, ∅

∅, {q′′2}, {q1} ∪ S′′, {q′′2}

×

Figure 2.2: NCSB incorrectly guessing safety of a run that contains
q1 ∈ F0 (successors of q2 are not accepting).

NCSB which for each run of the input automaton eventually guesses
correctly that it became safe, it follows indeed there is no accepting
run of the input automaton on w because an accepting run cannot ever
become safe.

NCSB uses several powerful concepts to put the theory into practice.
The fundamental concept is state representation of runs. Because there
are a possibly infinite amount of runs, they need a finite representation.
That is why an automaton constructed by NCSB works with four sets
of states in which a state q ∈ Q represents all runs that have reached q
after reading a finite prefix of w.

The set introduced as N contains all runs which have not yet left
the non-deterministic part of the input automaton (hence N), which
technically means N is a subset of non-deterministic states. How-
ever, it is also an implementation of a well-known concept named a
powerset construction [3, p. 775]. N can grow because it computes all
non-deterministic successors of the contained states, it is a union of
sets of successors.

The safe set S contains only runs that should be safe; this practically
translates so that it cannot contain any accepting states. If a run in S

7

2. Preliminaries

reaches an accepting state, some earlier guess was incorrect. NCSB
defines no transition to a configuration of S containing an accepting
state, forcing any complement run making the wrong guess to halt.

The set C contains runs which have reached the deterministic part
but have not been moved to S yet. It computes the determined succes-
sors of contained states and accepts new runs in the deterministic part
(i.e., those which have just reached the deterministic part). If an ac-
cepting state appears in C, its successor can non-deterministically stay
in C or be moved to S. This represents a guess whether the accepting
state was the last one contained in the corresponding run.

The breakpoint set B ⊆ C is a variation of another technique called
a breakpoint construction. In NCSB, B almost copies the behavior of C
with the difference that when non-empty, B does not accept new runs in
the deterministic part. When a subset of runs contained in B is moved
to S, it follows B must shrink as a consequence. Shrinking repeats until
B = ∅, which the authors call reaching a breakpoint [3, p. 775], and
new runs from C are copied to B so that the process can start again.

B can be interpreted as a magnifying glass on a subtree of runs in
the deterministic part, making sure they all eventually leave for S, then
moving on to check an adjoining subtree. Without B, we speculate that
NCSB would have hardly another way how to define its acceptance
condition, which needs to ensure all runs are being checked from a
certain point. C alone behaves too unpredictably to determine in the
accepting formalism that a subset of runs in C have left for S. On the
other hand, B makes it trivial: if it is emptied infinitely many times,
then we know that no run avoided checking by staying in C.

The complementation itself is computing correct configurations of
these sets and correct transitions between them. States of the comple-
ment automaton are instances of quadruples (N, C, S, B), and those
which contain an empty breakpoint are accepting. Transitions are
computed as informally described in the previous paragraphs when
saying what these sets compute or do. The mentioned principles stand
behind what NCSB does at its core and we shall make great use of
them. All will hopefully become clear once our NCSB extension to
complement the SDTGBA is formally defined.

8

3 SDTGBA Complementation

Unlike the SDBA, the SDTGBA use transitions to define their accep-
tance condition (hence transition-based) and we need to take this into
consideration when creating a complement construction for them.
However, it is a problem only of technical importance and should not
present a great difficulty.

The real challenge for the extension to accept a word w is checking
whether every run of the input automaton on w eventually stops
visiting at least one of the acceptance sets (when it becomes safe relative
to this set), because for no run we know in advance which acceptance
set it will be (it can vary).

As in the case of NCSB, we also use the guess-and-check strategy and
state representation of runs using the familiar sets of states. The set N
is used to track runs in the non-deterministic part of the SDTGBA, the
set C tracks still possibly unsafe runs in the deterministic part and the
set B ensures every run is eventually checked. These sets are explained
in Section 2.2.

The difference in our approach is that we have several safe sets
S0, . . . , Sk where each Si contains runs which should be safe relative to
its corresponding acceptance set Fi. Intuitively, this means the extension
tries to guess non-deterministically for every run the correct safe set,
checking is then analogous to NCSB. If a run in Si uses a transition
from Fi, the guess was incorrect and the complement run that made
this guess halts to prevent accepting a possibly incorrect word.

To minimize the number of guesses, the extension restricts the
moments when a particular run can be non-deterministically moved to
one of S0, . . . , Sk. This is only when the run uses an accepting transition,
or when the run enters the deterministic part (because some runs can
contain no accepting transitions at all). The type of the used accepting
transition also gives the non-deterministic choices for the safe sets
(which is described in detail under the formal definition).

Moreover, such an optimization means that the only occurrence
of non-determinism will be exactly at these two mentioned places
(described again under the formal definition). Further non-trivial op-
timizations are placed at the end of the chapter because they come at
a price of increasing technical difficulty.

9

3. SDTGBA Complementation

3.1 Formal Construction

Let 𝒜 = (Q, Σ, δ, qI ,ℱ) be an SDTGBA where Q = QN ∪ QD such that
the conditions for semi-determinism are met and ℱ = {F0, . . . , Fk}.
We define the complement automaton 𝒞 = (R, Σ, δ𝒞 , rI , {F𝒞}) of 𝒜 as
follows.

∙ R ⊆ 𝒫(QN)×𝒫(QD)×𝒫(QD)
k+1 ×𝒫(QD),

∙ rI = ({qI}, ∅, ∅, . . . , ∅︸ ︷︷ ︸
safe sets

, ∅),

∙ F𝒞 = {r a−→ (N′, C′, S′
0, . . . , S′

k, B′) ∈ δ𝒞 | B′ = ∅},

∙ and the transition

(N, C, S0, . . . , Sk, B) a−→ (N′, C′, S′
0, . . . , S′

k, B′) ∈ δ𝒞

if and only if

E1) N′ = ∆(N, a) ∩ QN

(tracking the runs in the non-deterministic part correctly),
E2) C′ ∪ S′

0 ∪ . . . ∪ S′
k

= ∆(C ∪ S0 ∪ . . . ∪ Sk, a) ∪
(
∆(N, a) ∩ QD

)
(tracking the runs in the deterministic part correctly),

E3) C′ ⊇ ∆(C, a, δ ∖⋃ℱ)

(only runs using an accepting transition can leave C to a
safe set),

E4) C′ ∩ (S′
0 ∪ . . . ∪ S′

k) = ∅
(runs cannot be safe and unsafe at the same time),

E5) S′
i ∩ S′

j = ∅ for each 0 ≤ i < j ≤ k

(runs need to be safe only in one of the safe sets),
E6) ∆(q, a) ̸= ∅ for each q ∈ C

(finite runs should be moved to one of the safe sets before
halting),

10

3. SDTGBA Complementation

E7) if B ̸= ∅ then B′ = ∆(B, a) ∩ C′ else B′ = C′

(B tracks a fixed subset of runs staying in C until a break-
point is reached, then it is filled with new runs in C),

E8) S′
i ⊆ ∆(Si, a) ∪ ∆(C, a, Fi) ∪

(
∆(N, a) ∩ QD

)
for each 0 ≤ i ≤ k
(possible additions to Si are given by accepting transitions
from Fi used by runs in C and transit transitions used by
runs entering QD),

E9) S′
i ⊇ ∆(Si, a) for each 0 ≤ i ≤ k

(safe runs stay safe in the same safe set),
E10) ∆(Si, a, Fi) = ∅ for each 0 ≤ i ≤ k

(safe runs cannot use a corresponding accepting transition).

As in the case of NCSB, note that any r = (N, C, S0, . . . , Sk, B) ∈ R
is deterministic except for the following two cases, which are important
for proving Theorem 2.

∙ A run represented by q2 immediately after using a transit transi-
tion (q2 ∈ ∆(N, a) ∩ QD and a has just been read) can either be
left in C′ or moved into one of the safe sets S′

0, . . . , S′
k.

∙ A run represented by q immediately after an accepting transition
from both Fi and Fj (q ∈ ∆(C, a, Fi ∩ Fj) and a has just been read)
can either be left in C′ or moved into one of S′

i or S′
j.

On the other hand, 𝒞 is not unambiguous opposed to NCSB con-
structions. This is for two primary reasons, which are not trivial to
circumvent.

∙ A run can be safe relative to several acceptance sets and 𝒞 as
defined above does not enforce a particular choice.

∙ A run can either take its own opportunity to be moved to one of
the safe sets Si (that is when using a transit transition or imme-
diately after using an accepting transition from Fi), or in certain
cases wait for an intersecting run to be moved to Si together (see
Figure 3.1).

11

3. SDTGBA Complementation

ρ1 : ... q1 q′1 ...

ρ2 : ... q2

0 1

0

C S′
0

Figure 3.1: A delayed jump to S0 with an intersecting run. Marked
transitions belong to the corresponding acceptance sets F0, F1 ∈ ℱ . If
the transition marked 1 was not accepting, the delayed jump would
be forbidden by E3.

In the following text, we shall strictly refer to runs of the comple-
ment automaton 𝒞 as superruns (even though they are TGBA runs in
the ordinary sense) and to the states of 𝒞 as superstates (even though
they are TGBA states in the ordinary sense). This is to prevent any
misunderstandings connected with interchangeability.

3.2 Complexity

The superstate space is strikingly similar to that of NCSB. However,
unlike NCSB which forbids accepting states in S, the extension places
no general restrictions for membership in the sets of its tuples other
than members’ (non-)deterministic behavior and the fact that all sets
except C and B are disjoint while B ⊆ C.

This can surely be improved as discussed in Section 3.4.3. For
now, it does not prevent us from deducing the upper bound on the
states of the constructed complement. Let us consider any superstate
r = (N, C, S0, . . . , Sk, B) ∈ R, then

∙ a state q ∈ QN either is or is not present in N, and

∙ a state q ∈ QD is either in just C or in both C and B or in just one
of the k + 1 sets S0, . . . , Sk (because they are mutually disjoint)
or not present in r at all.

Thus the upper bound is apparently given by

|R| ≤ 2|QN | ·
(
3 + (k + 1)

)|QD|.

12

3. SDTGBA Complementation

0
a

1 b

(a) The input DTGBA 𝒜

a

b
a, b a, b

a b

(b) The complement of 𝒜

Figure 3.2: Standard complementation of a total DTGBA with ℱ =
{F0, F1}, where marked transitions belong to the corresponding accep-
tance sets. The transitions marked belong to the only acceptance set
of the complement automaton.

In conclusion of this short analysis, we must mention a nice prop-
erty that since a DTGBA is semi-deterministic with qI ∈ QD, its com-
plement can be constructed using our extension. Because there always
exists only one run of a DTGBA on a word w, we know in addition to
the aforementioned that

∙ max{|N|, |C|, |S0|, . . . , |Sk|, |B|} ≤ 1,

∙ C = B, and

∙ N ̸= ∅ only in rI (when qI ∈ N and C = S0 = . . . = Sk = ∅).

Hence for each r ̸= rI , there exists a single state q ∈ QD which is
either in C = B or in exactly one of the k + 1 safe sets S0, . . . , Sk if we
assume the input DTGBA to be total. The upper bound on the number
of states for our construction used on a total DTGBA is then

|R| ≤ 1 +
(
1 + (k + 1)

)
· |QD|.

This is analogous to the standard complementation algorithm for
the total DTGBA (see Figure 3.2), whose upper bound on the number
of states is (1 + (k + 1)) · |QD|. It works by making a copy of the input
DTGBA for each acceptance set and then cutting off corresponding
accepting transitions in each copy, while only the remaining transi-
tions in the copies are accepting. A run can jump from the original
automaton non-deterministically to one of the copies (guessing it will
use no more corresponding accepting transitions); only there it can
become accepting.

13

3. SDTGBA Complementation

3.3 Correctness

To avoid redundancy in the following text, we often omit information
unnecessary for our argument when discussing transitions of a su-
perrun. At least these phrases are used repetitively throughout the
proofs.

∙ By saying that the superrun contains a transition to x ∈ N (under
a ∈ Σ), we mean the superrun contains a transition

q a−→ (N, C, S0, . . . , Sk, B) ∈ δ𝒞

such that x ∈ N, with an analogous meaning for transitions to
x ∈ C, to x ∈ S0, . . . , Sk, or to x ∈ B.

∙ When the superrun contains a transition to B = ∅ (under a), this
means it contains a transition q a−→ (N, C, S0, . . . , Sk, ∅) ∈ δ𝒞 .

∙ The meaning is in both of the previous cases symmetrical when
we speak of the superrun containing a transition (under a) from
B = ∅, from x ∈ N, x ∈ C, etc.

∙ We plentifully use the defined term successor of a state qi ∈
Q. Please recall its definition, because it always refers to any
successor of qi in a run (usually given by context), including qi
itself: qi is a successor of qi for technical reasons. We never use
the term for superstates.

Theorem 1. Let 𝒜 = (Q, Σ, δ, qI ,ℱ) be an SDTGBA where Q = QN ∪
QD such that the conditions for semi-determinism are met and 𝒞 be the com-
plement automaton of 𝒜 as defined in Section 3.1. Then

∀w = w0w1w2w3 . . . ∈ Σω : w ∈ L(𝒜) =⇒ w /∈ L(𝒞).

Proof. Let ρ be an accepting run of 𝒜 on w. By definition ρ contains
infinitely many transitions from each Fi ∈ ℱ . This also means that
there is a suffix of ρ containing only states in QD because 𝒜 is semi-
deterministic (SD1, SD3). Let ρD be such a suffix that

14

3. SDTGBA Complementation

ρ = . . . (qi
wi−→ qi+1) (qi+1

wi+1−−→ qi+2) . . .︸ ︷︷ ︸
ρD

where either it holds that qi = q0 or qi ∈ QN, and that qi+1 ∈ QD.
Suppose for a contradiction that w ∈ L(𝒞). For an accepting and

thus infinite superrun ζ of 𝒞 on w, it is trivial to see by E1 that ζ
contains a transition from qi ∈ N. Now wi is read and hence by E2 ζ
must also contain a transition to qi+1 ∈ C ∪ S0 ∪ . . . ∪ Sk. By E4, two
mutually exclusive possibilities arise here:

P1) qi+1 ∈ S0 ∪ . . . ∪ Sk. Thus qi+1 is by E5 only in one of the safe
sets, let us call it Sj. Hence by E9, for each successor ql of qi+1
contained in ρD, ζ contains a transition to ql ∈ Sj. Therefore the
infinite ζ especially contains a transition to such ql ∈ Sj that
ql

wl−→ ql+1 ∈ Fj, since ρD contains infinitely many transitions
from each F0, . . . , Fk by assumption. This is in contradiction with
E10.

P2) qi+1 ∈ C. If qi+1 ∈ B, after finitely many transitions there must
follow a transition to B = ∅ by ζ being accepting. Because ρ is
infinite, this must also mean by E2 and E7 that there is a successor
qm of qi+1 such that ζ contains a transition to qm ∈ S0 ∪ . . . ∪ Sk,
for which we argue in the same way as for qi+1 in P1.
If qi+1 /∈ B, after finitely many transitions there must follow a
transition to B = ∅ by ζ being accepting. Because ρ is infinite,
this must also mean there is a successor qb of qi+1 such that ζ
contains a transition to either qb ∈ B by E2, E3, E7 for which we
argue in the same way as for qi+1 in the previous paragraph, or
to qb ∈ S0 ∪ . . . ∪ Sk (because successors stay in C unless moved
to Si by E2, E3, E8) for which we argue in the same way as for
qi+1 in P1.

To prove the other implication, let us consider the following. If a
non-accepting run contains finitely many transitions from several sets
Fi, . . . , Fj, then obviously one of them must be the set with the minimal

15

3. SDTGBA Complementation

index. If we know the run to be non-accepting, then there surely exists
a function returning this minimal index (see Definition 1).

What is more, for every pair of intersecting runs with all common
suffixes containing only states in QD, it must hold that their corre-
sponding safe set Sj with the minimal index is the same because their
common future determines for both whether they contain finitely
many transitions from the same Fj (see Lemma 1).

Definition 1. Let 𝒜 = (Q, Σ, δ, qI , {F0, . . . , Fk}) be an SDTGBA where
Q = QN ∪ QD such that the conditions for semi-determinism are met. If
there exists a non-accepting run ρ of 𝒜 on w, then minw : QD × N →
{0, . . . , k} is defined such that minw(q, i) = j for each ρ whose i-th tran-
sition is from q where j is the minimal index such that ρ contains finitely
many transitions from Fj.

Lemma 1. For all successors q′ of q holds that if minw(q, i) is defined and
the transition from q′ is i′-th, then minw(q, i) = minw(q′, i′).

Because we know that each run is non-accepting, we must know
after what prefix of w it contains no further transitions from the ac-
ceptance set (it is safe to) with the minimal index (see Definition 2).
Once it becomes safe, it is always safe (see Lemma 2).

Definition 2. If minw(q, i) is defined, then min_safew : QD ×N → {0, 1}
is defined such that

min_safew(q, i) =

1 every run of 𝒜 on w whose i-th transition

is from q contains no transitions from Fminw(q,i)

in its suffix starting with the i-th transition,

0 otherwise.

Lemma 2. For all successors q′ of q holds that if the transition from q′ is
i′-th then min_safew(q, i) = 1 =⇒ min_safew(q

′, i′) = 1.

Theorem 2. Let 𝒜 = (Q, Σ, δ, qI ,ℱ) be an SDTGBA where Q = QN ∪
QD such that the conditions for semi-determinism are met and 𝒞 be the com-
plement automaton of 𝒜 as defined in Section 3.1. Then

∀w = w0w1w2w3 . . . ∈ Σω : w /∈ L(𝒞) =⇒ w ∈ L(𝒜).

16

3. SDTGBA Complementation

Proof. We shall prove by contraposition. Suppose that w /∈ L(𝒜),
therefore every run of 𝒜 on w contains finitely many transitions from
some Fj ∈ ℱ and thus for all reachable q ∈ QD exists i ∈ N such
that minw(q, i) is defined. For simplicity, let us set minw = min and
min_safew = min_safe.

Consider now the superrun

ζ = ({qI}, ∅, ∅, . . . , ∅, ∅)
w0−→ (N1, C1, S1

0, . . . , S1
k , B1)

(N1, C1, S1
0, . . . , S1

k , B1)
w1−→ (N2, C2, S2

0, . . . , S2
k , B2) . . .

(Ni, Ci, Si
0, . . . , Si

k, Bi)
wi−→ (Ni+1, Ci+1, Si+1

0 , . . . , Si+1
k , Bi+1) . . .

of 𝒞 on w (where for A ⊆ Q the symbol Ai denotes the set’s i-th
iteration). Recall that ζ is fully determined except for the only two places
of non-determinism we have discussed in Section 3.1. Therefore, we
specify a restriction for them here. We select ζ such that

∀i ∈ N :
(

q ∈ ∆(Si
m, wi) ∪ ∆(Ci, wi, Fm) ∪

(
∆(Ni, wi) ∩ QD

)
∧ m = min(q, i + 1) ∧ min_safe(q, i + 1) = 1

)
⇐⇒ q ∈ Si+1

m .

Hence ζ places a run into Si if and only if there is no Si′ for i′ < i
such that the run contains finitely many transitions from Si′ . The
placement occurs at the first correct opportunity: either after the run
uses the last accepting transition from Fi if it contains such an accepting
transition, or otherwise after it uses a transit transition.

A consequence of this property that we use repetitively throughout
the proof is the following. If min_safe(q, i) = 1, then q is a successor of
q′ such that q′ ∈ Si′

min(q,i) for some i′ ≤ i in ζ (of which proof we leave
for the reader). Let us now show that ζ is infinite, and then show ζ is
accepting.

∙ ζ is infinite. E1, E2, E3, E7, E8 hold for all i ∈ N in ζ trivially. We
have to show that the restriction does not break the remaining
conditions associated with the safe sets by induction.
Obviously the remaining conditions work for i = 0 and i = 1,
hence the first transition exists. Let us assume they hold for all

17

3. SDTGBA Complementation

i′ < i + 1 and show that then they hold for the i + 1-th iteration
of sets (hence the i-th transition exists).

E5: Assuming for a contradiction q ∈ Si+1
j ∩ Si+1

j′ for j ̸= j′,
then from the definition of ζ, it follows that j = min(q, i + 1) ̸=
min(q, i + 1) = j′ which is a contradiction.

E9: If q ∈ ∆(Si
j, wi), then we know by the definition of ∆ that

q is a successor of q′ ∈ Si
j, which means by the definition of ζ

that j = min(q′, i) and min_safe(q′, i) = 1. Since Lemma 1 and
Lemma 2 holds, from the definition of ζ follows q ∈ Si+1

j .

E10: If q ∈ Si+1
j , then min_safe(q, i + 1) = 1 and j = min(q, i + 1)

by the definition of ζ and thus q cannot be a source of a transition
from Fj.

E4: Assuming for a contradiction q ∈ Si+1
j ∩ Ci+1, from the

definition of ζ and E3 this means q ∈ ∆(Ci, wi, δ ∖ Fmin(q,i+1)),
hence q is a successor of some qi ∈ Ci. But recall it also means
that min_safe(q, i + 1) = 1, hence qi is a successor of q′i such that
q′i ∈ Si′

j for some i′ ≤ i. By E9 we know that qi ∈ Si
j and thus

qi /∈ Ci by I.H. because i′ ≤ i, which is a contradiction.

E6: If ∆(q, wi) = ∅, then surely min_safe(q, i) = 1. But recall this
means that q is a successor of q′ such that q′ ∈ Si′

min(q,i) for some
i′ ≤ i, therefore q ∈ Si

min(q,i) by E9 and thus q /∈ Ci by E4.

∙ ζ is accepting. If q ∈ B f for some f ∈ N, then q is by the defi-
nition of ζ such that its successor q′ is the destination of a last
accepting transition from Fj moved into S f ′

j for some f ′ > f ,
hence by E4 q′ /∈ B f ′ and so |B f ′ | < |B f | by E7. However, since
ζ is infinite and this applies to any non-empty B f , especially if
|B f | = 1, ζ contains infinitely many transitions to B f ′ = ∅.

18

3. SDTGBA Complementation

3.4 Further Optimizations

The practical problems of the extension defined in Section 3.1 are
fourfold.

1. We are not making use of the transition-based acceptance even
though it can saves us a few states: ℱ𝒞 can be reformulated so
that empty breakpoints are skipped when possible.

2. The non-determinism that gives runs entering QD a choice to
move to any one of the safe sets is so strong that it creates a lot
of redundancies, which we shall explain before removing it.

3. The safe sets do not place any restrictions upon the states they
contain, even though the states can be sources only of accepting
transitions forbidden in the sets.

These problems are not handled in the original extension because
they would complicate its basic idea with technical details. Another
reason is that since we can already assume correctness of our extension,
it is easier to show that the optimizations preserve correctness than to
prove the optimized extension from scratch.

That is why they are dealt with now in the following paragraphs,
building step by step the optimized construction on which the experi-
mentally better implementation is based. The optimizations come in
(logical) series: one optimization always builds upon the changes de-
fined by the previous one. A final review of the optimized construction
with all suggested optimizations is in Section 3.4.4.

3.4.1 Skipping Empty Breakpoints When Possible

If an emptied B is to be filled with new states from C, then it does
not have to be emptied at all. We can peek to check B would be emptied
in the next step, fill it with the new states from C right away and
make such a transition accepting. Formally this can be implemented
by changing the rule E7 to

E7) if ∆(B, a) ∩ C′ ̸= ∅ then B′ = ∆(B, a) ∩ C′ else B′ = C′,

19

3. SDTGBA Complementation

and then by changing the acceptance condition of the construction to

ℱ𝒞 = {(N, C, S0, . . . , Sk, B) a−→ (N′, C′, S′
0, . . . , S′

k, B′) ∈ δ𝒞

| ∆(B, a) ∩ C′ = ∅}.

Notice how we use both B and C′ when choosing the right accept-
ing transitions for ℱ𝒞 . This is possible only thanks to the fact that
unlike state-based acceptance, transition-based acceptance provides
us with extra information about the previous state. The optimization
preserves correctness because the original extension actually accepts
every time ∆(B, a) ∩ C′ = ∅, it just delays the refilling of B.

3.4.2 Reducing Non-Determinism for Runs Entering QD

When considered carefully, the non-determinism used on runs en-
tering QD, which allows them to be moved to any one of the safe
sets, generates at least k + 1 copies of each reachable state in the de-
terministic part. This is because the reachable destinations of transit
transitions can be moved into any one of the sets S0, . . . , Sk. Without
removing it, there is not a good chance to outperform NCSB running
on degeneralized automata.

However, it cannot be removed without changing several rules
of the extension because this non-determinism has a substantial task
to deal with the runs not containing any accepting transitions at all.
What is feasible is to decide non-deterministically whether we move
runs entering QD or those using an accepting tranisition into just S0
or simply leave them to C. Such an idea surely solves runs containing
no accepting transitions at all and finitely many transitions from F0.

The method to handle the remaining runs is to allow jumping
through successive safe sets with Sk serving as a ceiling. The first time
a run uses an accepting transition from Fi in Si, it is automatically
moved into the next Si+1 if i < k. If there is no available next safe set
(i = k), then a superrun halts.

One consequence of this change needs to be fixed though. Intersect-
ing runs can now appear in different safe sets (consider Figure 3.3) and
thus can make otherwise accepting superruns halt (E5). The disjoint
nature of safe sets cannot be canceled without worsening complexity.
Therefore we also change the rule on inclusions of the successors in

20

3. SDTGBA Complementation

qn

f

q1 q2

a, b

a, b

a, b

a

b 0
a

QD

(a) The input SDTGBA

{qn}, ∅, ∅, ∅, ∅

{qn}, ∅, {q1, f }, ∅, ∅

{qn}, ∅, {q1, q2, f }, ∅, ∅

{qn}, ∅, {q1, f }, {q2}, ∅

{qn}, ∅, {q1, q2, f }, {q2}, ∅

{qn}, ∅, {q1, f }, { f }, ∅

a

a

a

a

b

b

×

(b) A needed superrun halts for E5

Figure 3.3: Assuming ℱ = {F0, F1}, the consequence of the naive
version of Optimization 3.4.2 is that the only potentially accepting
superruns on w = aaaabω halt on intersecting runs in different safe
sets (other superruns are non-accepting for E3 or E6). This is despite
all runs of the input automaton being non-accepting.
The transition marked 0 in (a) belongs to F0. In (b) the transitions
marked (would) belong to the only acceptance set of the complement
automaton.

21

3. SDTGBA Complementation

safe sets so that intersecting runs to appear in several safe sets Si, . . . , Sj
must be kept in that one of them with the maximal index.

The ideas just presented are contained in the semantics of the
following macro. Let SAFE(i, A) be a macro defined

SAFE(i, A) =
(
∆(Si, a, δ ∖ Fi) ∪ ∆(Si−1, a, Fi−1) ∪ A

)
∖

k⋃
j=i+1

S′
j

where S−1 = F−1 = ∅ (if i = 0). The set A is just kept as an option to
extend the range of values within the intersection fix.

The optimization is formally defined by replacing E8, E9, E10 in
Section 3.1 and adding a new one at the end:

E8) S′
0 ⊆ SAFE

(
0, ∆(C, a,

⋃ℱ) ∪
(
∆(N, a) ∩ QD

))
(possible additions to S0 are given by runs using an accepting
transitions in C and runs entering QD),

E9) S′
0 ⊇ SAFE(i, ∅)

(runs in S0 must stay there unless they use an accepting transition
from F0 or unless an intersection appears in some Sj for j > 0),

E10) ∆(Sk, a, Fk) = ∅

(runs in Sk cannot use an accepting transition from Fk),

E11) S′
i = SAFE(i, ∅) for each 1 ≤ i ≤ k

(runs cannot escape from Si except when destinations of accept-
ing transitions from Fi are moved to S′

i+1 if it exists; intersecting
runs are kept in the safe set with the maximal index).

The reason why these changes preserve correctness is not easy to
see at a first glance. After closer inspection, the optimization works
because if a run visits each F0, . . . , Fk infinitely many times (it is ac-
cepting in the input automaton), it will always eventually be blocked
in Sk or stay in C forever. If there is a set Fi that the run does not visit
infinitely many times, there will be a proper time to move the run to
S0, from where it will get at worst1 to Si and no further. There it will
never be blocked.

1. The run can in the mean time become safe relative to an Fj where j < i.

22

3. SDTGBA Complementation

As a side note, the safe set with the maximal index has to be pre-
ferred for intersecting runs because otherwise it would be possible for
an accepting run of the input automaton to avoid checking by jumping
on intersecting runs to lesser sets just before being blocked in Sk.

3.4.3 Cutting Down Si

To reduce the number of possible states appearing in a safe set Si,
there are at least two things we can do. The original NCSB serves
as an inspiration because it forbids any accepting states in S. Since
an accepting state can be translated as a source of only accepting
transitions, the same optimization can be integrated into our extension.

The basic idea is straightforward: forbid sources of only accepting
transitions from Fi in Si, let us call these sources accepting states in Fi

2.
Since we work with generalized automata, this means that accepting
states in each Fi, . . . , Fj will not appear in any one of the corresponding
safe sets Si, . . . , Sj.

It is harder to define what exactly this means because we cannot
just ignore states (E2 has to hold). The formal definition has to account
for the following.

∙ If a new guess from C is an accepting state in Fi, then it can only
appear in the safe set Si′ with the minimal i′ ̸= i such that it is
not accepting in Si′ . Accepting states in each one of the declared
acceptance sets F0, . . . , Fk cannot be moved to any safe set.

∙ When an accepting state in Fi is to appear in Si, then it must
instead appear in Si′ as mentioned in the previous point except
that i′ > i (otherwise runs could avoid checking by jumping on
accepting states to lesser sets). If Si′ does not exist, then such a
superrun halts, especially when an accepting state in each one of
the declared acceptance sets F0, . . . , Fk is to appear in Si.

For the optimization already defined in Section 3.4.2, this will
mean that a run can now jump not only on corresponding accepting
transitions and intersections but also on accepting states, possibly
through several successive safe sets at once. It is challenging to define

2. Fi ̸= ∅ does not imply there exists an accepting state in Fi.

23

3. SDTGBA Complementation

both optimizations so that they work hand in hand and not cancel
each other out.

First we define the (possibly non-disjoint) sets Acc0, . . . , Acck for
each declared acceptance set F0, . . . , Fk such that

Acci = {q ∈ QD |
(
({q} × Σ × QD) ∩ δ

)
∖ Fi = ∅},

hence Acci contains accepting states in Fi. Then we define macros

∙ M(i) = {q ∈ ∆(C, a,
⋃

F) ∪
(
∆(N, a) ∩ QD

)
| ∀j < i : q ∈ Accj},

(set of candidates to be moved non-deterministically into Si:
such destinations of used accepting transitions or of used transit
transitions that are accepting in each Fj where j < i),

∙ K(i) = {q ∈ QD | ∃l < i : q ∈ ∆(Sl, a) and
∀l ≤ j < i : q ∈ Accj},

(set of candidates to be moved deterministically into Si: succes-
sors to occur in Sl for some l < i such that they are accepting in
each Sj where l ≤ j < i),

and then we alter the following rules from the optimization in Sec-
tion 3.4.2.

E8) S′
0 ⊆ SAFE

(
0, M(0)

)
∖ Acc0

(possible additions to S0 are such destinations of used accepting
transitions or of used transit transitions that are not accepting in
F0 and they are not in an intersection with Sj where j > 0),

E9) S′
i ⊇ SAFE

(
i, K(i)

)
∖ Acci for each 0 ≤ i ≤ k

(runs cannot escape Si unless they use an accepting transition
from Fi or an intersection appears in some Sj for j > 0; destina-
tions of accepting transitions in Si must be pushed to S′

i+1 if it
exists),

E10) ∆(Sk, a, Fk) = ∅ ∧
(
∆(Sk, a) ∩ Acck = ∅

)
∧
(
K(k) ∩ Acck

)
= ∅

(safe runs in Sk cannot use a transition from Fk and cannot contain
nor receive an accepting state in Fk),

24

3. SDTGBA Complementation

E11) S′
i ⊆ SAFE

(
i, K(i) ∪ M(i)

)
∖ Acci for each 1 ≤ i ≤ k

(possible additions to Si are such destinations of accepting tran-
sitions or of transit transitions that are accepting in all Fj where
j < i, unless they are also accepting in Fi or unless they are in
an intersection with Sj where j > i).

From the formalism itself, it would be too verbose to prove that it
preserves correctness. A sketch of the reasoning is this. Analogously to
Section 3.4.2, an accepting run will stay forever in C or will eventually
be blocked in Sk, possible jumping to greater safe sets on accepting
states does not break this in any way.

On the other hand, for a non-accepting run containing finitely
many transitions from Fi, there must be a proper time to move it to
some Sj such that j ≤ i from where it will get at worst to Si and no
further because no remaining accepting transitions in Fi also imply
no remaining successors accepting in Fi. There the run will never be
blocked.

3.4.4 Optimizations Review

To sum up, let 𝒜 = (Q, Σ, δ, qI ,ℱ) be an SDTGBA where Q = QN ∪
QD such that the conditions for semi-determinism are met and ℱ =
{F0, . . . , Fk}. For clarity, these are again the macros we have defined
for the optimizations.

∙ SAFE(i, A) =
(
∆(Si, a, δ ∖ Fi) ∪ ∆(Si−1, a, Fi−1) ∪ A

)
∖

k⋃
j=i+1

S′
j

where S−1 = F−1 = ∅ (if i = 0),

∙ M(i) = {q ∈ ∆(C, a,
⋃

F) ∪
(
∆(N, a) ∩ QD

)
| ∀j < i : q ∈ Accj},

∙ K(i) = {q ∈ QD | ∃l < i : q ∈ ∆(Sl, a) and
∀l ≤ j < i : q ∈ Accj}.

The optimized complement automaton 𝒞 = (R, Σ, δ𝒞 , rI , {F𝒞}) of 𝒜
is defined as in Section 3.1, with the exception that the transition

(N, C, S0, . . . , Sk, B) a−→ (N′, C′, S′
0, . . . , S′

k, B′) ∈ δ𝒞

25

3. SDTGBA Complementation

if and only if

E1) N′ = ∆(N, a) ∩ QN,

E2) C′ ∪ S′
0 ∪ . . . ∪ S′

k
= ∆(C ∪ S0 ∪ . . . ∪ Sk, a) ∪

(
∆(N, a) ∩ QD

)
,

E3) C′ ⊇ ∆(C, a, δ ∖⋃ℱ),

E4) C′ ∩ (S′
0 ∪ . . . ∪ S′

k) = ∅,

E5) S′
i ∩ S′

j = ∅ for each 0 ≤ i ̸= j ≤ k,

E6) ∆(q, a) ̸= ∅ for each q ∈ C,

E7) if ∆(B, a) ∩ C′ ̸= ∅ then B′ = ∆(B, a) ∩ C′ else B′ = C′,

E8) S′
0 ⊆ SAFE

(
0, M(0)

)
∖ Acc0,

E9) S′
i ⊇ SAFE

(
i, K(i)

)
∖ Acci for each 0 ≤ i ≤ k,

E10) ∆(Sk, a, Fk) = ∅ ∧
(
∆(Sk, a) ∩ Acck = ∅

)
∧
(
K(k) ∩ Acck

)
= ∅,

E11) S′
i ⊆ SAFE

(
i, K(i) ∪ M(i)

)
∖ Acci for each 1 ≤ i ≤ k.

26

4 Evaluation

Although we have already analyzed the upper bound on the states of
the output constructed by our extension in Section 3.2, experimental
results can often help see more as to an algorithm’s practical use-
fulness. What interested us mainly was the comparison with NCSB
running on degeneralized automata because we wanted to see if our
approach could save anything by skipping degeneralization. Then
we were curious how our extension performs when compared with a
completely another complementation algorithm able to work with the
SDTGBA.

The SPOT library [6] met our requirements: for the testing data set
it can generate random automata and also perform degeneralization
we needed. It contains an implementation of NCSB able to work with
the transition-based BA (TBA), hence transformation from TBA to BA
was not needed. It also includes a tool that uses its own algorithm
to complement any TGBA of choice based on determinization. Most
importantly, SPOT C++ API provided us with an efficient platform
to implement our extension. The overview of the CLI tools we used
from SPOT can be found in Table 4.1.

Tool Description
randaut Generates random automata.
randltl Generates random LTL formulas.
ltl2tgba Converts an LTL formula into a TGBA.
autfilt Filters automata based on given properties.
autcross Checks and compares equivalent automata.

Table 4.1: Tools used in the evaluation.

4.1 Implementation (TGNCSB)

As said before, the extension’s implementation is written in C++ using
the SPOT API, and we call it TGNCSB (as in the Transition-based Gen-
eralized NCSB algorithm) to prevent confusion in the evaluation. It is

27

4. Evaluation

attached and released under the GNU GPL license. Thanks to SPOT, its
code is not long enough to need splitting into separate files. Therefore
it consists of only two files: tgncsb.cpp and tgncsb-opt.cpp (exclud-
ing header files). The former represents the basic version formally
defined in Section 3.1, and the latter is the optimized version reviewed
in Section 3.4.4. Even though they have common parts, they are not
merged in any way so that they can be explored with diff or a similar
tool.

We must emphasize that TGNCSB is heavily based on the inter-
nal NCSB implementation present in SPOT1 because editing a high-
performance code should arguably be preferred to implementing from
scratch. We have hopefully included sufficient commentary to make it
readable and also made sure each rule from the formal construction
is labeled in the corresponding part of the code.

A CMakeLists.txt file is included to simplify compilation. There-
fore once SPOT is installed2, cmake . && make should suffice to com-
pile the implementation on a standard UNIX machine. Because making
a stand-alone tool was not our aim, the resulting binaries simply take
just one required and one optional argument (strictly in the given
order): 1) the path to a file with the input automaton in the HOA for-
mat [7], and 2) --postprocess can be added if we want the output of
TGNCSB to run through SPOT’s optimizations before being returned
(which is called postprocessing).

4.2 Experimental Comparison

Using SPOT’s Python bindings, we have created a very simple Python
script degen_ncsb.py which first runs degeneralization on a given
input and only then it calls the internal NCSB (which is able to work
directly with the TBA). This script also takes one required argument
that is the path to a file with the input automaton in the HOA format,
and again the optional second argument --postprocess can be added
if we want postprocessing.

1. gitlab.lrde.epita.fr/spot/spot/blob/master/spot/twaalgos/complement.cc
should point to the stable version.
2. See spot.lrde.epita.fr/install.html for instructions.

28

https://gitlab.lrde.epita.fr/spot/spot/blob/master/spot/twaalgos/complement.cc
https://spot.lrde.epita.fr/install.html

4. Evaluation

cid command line
c1 | autfilt --small

c2 | autfilt -v --acc-sets=0..1 | autfilt -v --is-deterministic

c3 | autfilt --unique -n 1000 --is-semi-deterministic

c4 | autcross --csv={path} -T 60 -t "{t1}cmd1" "{t2}cmd2" ...

Table 4.2: Input processing.

The testing input can be divided into two types: the data set of
automata generated by randaut, and the data set of automata gener-
ated using ltl2tgba on LTL formulas randomly generated by randltl.
Both are explained in the corresponding sections. The testing input
was then run through preprocessing.

The state spaces of input automata were reduced in all cases to pre-
vent any algorithms from taking an advantage of input optimizations
(c1). We wished to filter out trivially generalized automata (|ℱ | = 1)
and deterministic automata (c2), since as already apparent in Sec-
tion 3.2, both would obscure potential benefits of using our extension
on strictly semi-deterministic non-trivially generalized automata. In
the end, we enforced a selection of 1000 unique strictly semi-deterministic
automata (c3).

The filtered and preprocessed input was then sent straight into
autcross (c4). It takes a path where to save the results, the number of
seconds to time out, and a series of strings, each specifying an arbitrary
tool identifier (such as t1) used to label the corresponding result in
the csv file and the command to be executed (such as cmd1). These
were the specific tool strings used for calling autcross.

∙ "{autfilt}autfilt --complement",

∙ "{tgncsb}./tgncsb-opt %H > %O",

∙ "{ncsb}./degen_ncsb.py %H > %O",

∙ "{tgncsb}./tgncsb %H > %O".

The macro %H returns the temporary file path containing the tested
automaton, the macro %O returns the path where autcross expects the

29

4. Evaluation

output. Since autfilt --complement does postprocessing in its core,
this algorithm was only included in the comparison when adding
--postprocess after %H.

The main focus of measurings were output states and edges3. All
experiments were running on a computer with the processor 1.6 GHz
Intel Core i5 and 8 GB of RAM, while the timeout was set to 60 seconds.
SPOT’s version was 2.7.1.

4.2.1 Running On randaut

This data set was generated using randaut 3..5 -n -1 -A 2..5 -Q8
(generating automata having |Q| = 8 and 2 ≤ |ℱ| ≤ 5). It was piped
straight into the tool chain presented in Table 4.2. We have placed the
cumulative results in Table 4.3 for each one of the tools.

The scatter plots Figure 4.1, Figure 4.2 compare the number of
generated states in particular instances (the x-th coordinate is used
for the number of states generated for a given input automaton by
one tool, the y-th for the other tool). The dotted areas are quite dense
because the input data set consisted of automata reduced from the
same number of states.

states edges
tool / postprocessing no yes no yes
autfilt - 17503 - 57843
tgncsb-opt 28624 23841 95026 78657
ncsb 36020 29443 103218 89388
tgncsb* 46117 - 203064 -

Table 4.3: Cells contain a cumulative number of states/edges in au-
tomata constructed for a test input of 1000 SDTGBA. The input was
generated by randaut.
* Results for the unoptimized tgncsb are just illustrative here because
they were not crosschecked due to their huge state spaces. Their post-
processing timed out in too many cases, hence tgncsb results with
postprocessing are excluded.

3. Edges are merged transitions. For more information see
https://spot.lrde.epita.fr/concepts.html#trans-edge.

30

https://spot.lrde.epita.fr/concepts.html#trans-edge

4. Evaluation

100 101 102

ncsb
100

101

102

tg
nc

sb
-o

pt

Figure 4.1: A comparison of the number of states created by tgncsb-opt
and ncsb used on 1000 SDTGBA with postprocessing. Input automata
were generated by randaut. Scales are logarithmic.

100 101 102

autfilt
100

101

102

tg
nc

sb
-o

pt

Figure 4.2: A comparison of the number of states created by tgncsb-opt
and autfilt used on 1000 SDTGBA with postprocessing. Input automata
were generated by randaut. Scales are logarithmic.

31

4. Evaluation

4.2.2 Running On randltl

This data set was created with randltl -n -1 a b c d | ltl2tgba
(generating random LTL formulas on four atomic propositions, then
converting the formulas into the TGBA). It was piped straight into the
toolchain presented in Table 4.2.

The toolchain makes sure that only those LTL formulas are used
which are converted into a valid and strictly semi-deterministic TGBA
with |ℱ | ≥ 2. It also makes sure that 1000 unique instances are always
received (even if some formulas fail to translate to the required form).

Table 4.3 contains the cumulative results measured for each one of
the tools. To repeat ourselves, since autfilt --complement uses post-
processing in its core, it was not included in the measurings without
--postprocess.

For a better insight check Figure 4.3 and Figure 4.4. These scatter
plots again compare the number of generated states in particular in-
stances (hence the x-th coordinate is used for the number of states
generated for a given input automaton by one tool, the y-th for the
other tool). The dotted areas are less dense here than their counter-
parts in Section 4.2.1 because LTL to TGBA translation gave a more
varying number of states in the input automata.

states edges
tool / postprocessing no yes no yes
autfilt - 10534 - 49416
tgncsb-opt 33943 12289 200278 49564
ncsb 41090 12657 207245 49262
tgncsb 105509 14454 824408 62004

Table 4.4: Cells contain a cumulative number of states/edges in au-
tomata constructed for a test input of 1000 SDTGBA. The input was
generated by converting randltl formulas to the required SDTGBA.

32

4. Evaluation

100 101 102

ncsb
100

101

102

tg
nc

sb
-o

pt

Figure 4.3: A comparison of the number of states created by tgncsb-opt
and ncsb with postprocessing. Input automata were generated by con-
verting random LTL formulas to the SDTGBA. Scales are logarithmic.

100 101 102

autfilt
100

101

102

tg
nc

sb
-o

pt

Figure 4.4: A comparison of the number of states created by tgncsb-opt
and autfilt with postprocessing. Input automata were generated by
converting random LTL formulas to the SDTGBA. Scales are logarith-
mic.

33

4. Evaluation

4.2.3 Observations

The optimized TGNCSB (tgncsb-opt) clearly outperforms NCSB run
on degeneralized automata both with and without postprocessing.
Its advantage in automata generated from random LTL formulas is
smaller probably because the automata from this input turned out to
have at most |ℱ | = 3, and that only 28 out of 1000 times. Therefore
degeneralization was less costly, and thus not much could have been
saved in contrast with input automata which had a non-trivial number
of acceptance sets.

However, it seems SPOT’s autfilt --complement still has the edge
over TGNCSB in most cases despite its generality, which remains
an open question for further analysis. Another interesting thing to
observe is the vertical pattern present in Figure 4.3 and Figure 4.4. In
some groups of LTL formulas, it gets worse only for TGNCSB and
not for NCSB or autfilt --complement. One hypothesis might be
that there are specific classes of LTL formulas that TGNCSB cannot
handle very well, which could also suggest a direction for further
improvement of TGNCSB.

34

5 Conclusion

Building upon the NCSB algorithm, we have devised its extension for
complementation of the SDTGBA. The extension has been formally
defined, its complexity analyzed, and its correctness has been proven.
Afterwards, several key optimizations have been described and de-
fined to improve its per instance performance.

The extension can complement the SDTGBA without transforming
the input automaton, and also produces trivially generalized automata
that work the same as the conventional (transition-based) BA. We have
also created an implementation of the extension in SPOT, which was
called TGNCSB. It was used to evaluate experimentally how much
the extension can save compared with two standard complementation
algorithms for the SDTGBA: the original NCSB using degeneralization
and the main SPOT’s complementation algorithm based on deter-
minization called autfilt --complement. We have concluded that
the optimized TGNCSB outperforms NCSB running on degeneralized
automata.

The extension does not perform so well when compared with
autfilt --complement. However, even though these results do not
look so promising, they suggest there might still be room for improve-
ment. A vertical pattern appeared in the scatter plot comparison of
TGNCSB and the other two algorithms used on automata generated
by converting random LTL formulas to the SDTGBA.

This means some groups of LTL formulas are worse for the op-
timized TGNCSB than others. Further analysis has to be made as
to why these groups appear and whether the formulas they contain
have anything in common. It also needs to be found out why autfilt
--complement has such an edge over TGNCSB despite it being a very
generic algorithm.

35

Bibliography

1. TSAI, Ming-Hsien; FOGARTY, Seth; VARDI, Moshe Y.; TSAY,
Yih-Kuen. State of Büchi Complementation. In: DOMARATZKI,
Michael; SALOMAA, Kai (eds.). Implementation and Application of
Automata. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,
p. 264. ISBN 978-3-642-18098-9. Available from DOI: 10.1007/978-
3-642-18098-9_28.

2. BLAHOUDEK, František. Automata for Formal Methods: Little Steps
Towards Perfection [online]. 2018 [visited on 2019-04-21]. Available
from: https://theses.cz/id/8z875b/. PhD thesis. Masarykova
univerzita, Fakulta informatiky, Brno.

3. BLAHOUDEK, František; HEIZMANN, Matthias; SCHEWE, Sven;
STREJČEK, Jan; TSAI, Ming-Hsien. Complementing Semi-deter-
ministic Büchi Automata. In: CHECHIK, Marsha; RASKIN, Jean-
François (eds.). Tools and Algorithms for the Construction and Anal-
ysis of Systems. Berlin, Heidelberg: Springer Berlin Heidelberg,
2016, pp. 770–787. ISBN 978-3-662-49674-9. Available from DOI:
10.1007/978-3-662-49674-9_49.

4. CHEN, Yu-Fang; HEIZMANN, Matthias; LENGÁL, Ondřej; LI,
Yong; TSAI, Ming-Hsien; TURRINI, Andrea; ZHANG, Lijun. Ad-
vanced Automata-based Algorithms for Program Termination
Checking. In: Proceedings of the 39th ACM SIGPLAN Conference
on Programming Language Design and Implementation. Philadelphia,
PA, USA: ACM, 2018, pp. 143–144. PLDI 2018. ISBN 978-1-4503-
5698-5. Available from DOI: 10.1145/3192366.3192405.

5. BLAHOUDEK, František; DURET-LUTZ, Alexandre; KLOKOČKA,
Mikuláš; KŘETÍNSKÝ, Mojmír; STREJČEK, Jan. Seminator: A
Tool for Semi-Determinization of Omega-Automata. In: EITER,
Thomas; SANDS, David (eds.). LPAR-21. 21st International Confer-
ence on Logic for Programming, Artificial Intelligence and Reasoning.
EasyChair, 2017, vol. 46, pp. 356–367. EPiC Series in Computing.
ISSN 2398-7340. Available from DOI: 10.29007/k5nl.

6. DURET-LUTZ, Alexandre; LEWKOWICZ, Alexandre; FAUCHILLE,
Amaury; MICHAUD, Thibaud; RENAULT, Etienne; XU, Laurent.
Spot 2.0 — a framework for LTL and ω-automata manipulation.

37

http://dx.doi.org/10.1007/978-3-642-18098-9_28
http://dx.doi.org/10.1007/978-3-642-18098-9_28
https://theses.cz/id/8z875b/
http://dx.doi.org/10.1007/978-3-662-49674-9_49
http://dx.doi.org/10.1145/3192366.3192405
http://dx.doi.org/10.29007/k5nl

BIBLIOGRAPHY

In: Proceedings of the 14th International Symposium on Automated
Technology for Verification and Analysis (ATVA’16). Springer, 2016,
vol. 9938, pp. 122–129. Lecture Notes in Computer Science. Avail-
able from DOI: 10.1007/978-3-319-46520-3_8.

7. BABIAK, Tomáš; BLAHOUDEK, František; DURET-LUTZ, Alexan-
dre; KLEIN, Joachim; KŘETÍNSKÝ, Jan; MÜLLER, David; PARKER,
David; STREJČEK, Jan. The Hanoi Omega-Automata Format. In:
KROENING, Daniel; PĂSĂREANU, Corina S. (eds.). Computer
Aided Verification. Cham: Springer International Publishing, 2015,
pp. 479–486. ISBN 978-3-319-21690-4.

38

http://dx.doi.org/10.1007/978-3-319-46520-3_8

A Attachments

Attached are the following files

∙ tgncsb.zip - an archive containing the latest version of TGNCSB
and its optimized version,

∙ experiments.zip - an archive containing the NCSB script work-
ing with the SDTGBA and all the measured results including
their description.

39

	Introduction
	Preliminaries
	 Semi-Deterministic TGBA (SDTGBA)
	 Intuition into the NCSB Algorithm

	SDTGBA Complementation
	 Formal Construction
	 Complexity
	 Correctness
	 Further Optimizations
	 Skipping Empty Breakpoints When Possible
	 Reducing Non-Determinism for Runs Entering QD
	 Cutting Down Si
	 Optimizations Review

	Evaluation
	 Implementation (TGNCSB)
	 Experimental Comparison
	 Running On randaut
	 Running On randltl
	 Observations

	Conclusion
	Bibliography
	Attachments

